Deconstruction of the catalytic array within the amidotransferase subunit of carbamoyl phosphate synthetase.

نویسندگان

  • X Huang
  • F M Raushel
چکیده

Carbamoyl phosphate synthetase from Escherichia coli catalyzes the formation of carbamoyl phosphate from bicarbonate, glutamine, and two molecules of ATP. The enzyme consists of a large synthetase subunit, and a small amidotransferase subunit, which belongs to the Triad family of glutamine amidotransferases. Previous studies have established that the reaction mechanism of the small subunit proceeds through the formation of a gamma-glutamyl thioester with Cys-269. The roles in the hydrolysis of glutamine played by the conserved residues, Glu-355, Ser-47, Lys-202, and Gln-273, were determined by mutagenesis. In the X-ray crystal structure of the H353N mutant, Ser-47 and Gln-273 interact with the gamma-glutamyl thioester intermediate [Thoden, J. B., Miran, S. G., Phillips, J. C., Howard, A. J., Raushel, F. M., and Holden, H. M. (1998) Biochemistry 37, 8825-8831]. The mutants E355D and E355A have elevated values of K(m) for glutamine, but the overall carbamoyl phosphate synthesis reaction is unperturbed. E355Q does not significantly affect the bicarbonate-dependent ATPase or glutaminase partial reactions. However, this mutation almost completely uncouples the two partial reactions such that no carbamoyl phosphate is produced. The partial recovery of carbamoyl phosphate synthesis activity in the double mutant E355Q/K202M argues that the loss of activity in E355Q is at least partly due to additional interactions between Gln-355 and Lys-202 in E355Q. The mutants S47A and Q273A have elevated K(m) values for glutamine while the V(max) values are comparable to that of the wild-type enzyme. It is concluded that contrary to the original proposal for the catalytic triad, Glu-355 is not an essential residue for catalysis. The results are consistent with Ser-47 and Gln-273 playing significant roles in the binding of glutamine.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of the hinge loop linking the N- and C-terminal domains of the amidotransferase subunit of carbamoyl phosphate synthetase.

Carbamoyl phosphate synthetase from Escherichia coli catalyzes the formation of carbamoyl phosphate from bicarbonate, glutamine, and two molecules of ATP. The enzyme consists of a large synthetase subunit and a small amidotransferase subunit. The small subunit is structurally bilobal. The N-terminal domain is unique compared to the sequences of other known proteins. The C-terminal domain, which...

متن کامل

Role of conserved residues within the carboxy phosphate domain of carbamoyl phosphate synthetase.

Carbamoyl phosphate synthetase (CPS) catalyzes the formation of carbamoyl phosphate from glutamine, bicarbonate, and 2 mol of MgATP. The heterodimeric protein is composed of a small amidotransferase subunit and a larger synthetase subunit. The synthetase subunit contains a large tandem repeat for each of the nucleotides used in the overall synthesis of carbamoyl phosphate. A working model for t...

متن کامل

Role of the four conserved histidine residues in the amidotransferase domain of carbamoyl phosphate synthetase.

Carbamoyl phosphate synthetase from Escherichia coli catalyzes the formation of carbamoyl phosphate from ATP, bicarbonate, and glutamine. The amidotransferase activity of this enzyme is catalyzed by the smaller of the two subunits of the heterodimeric protein. The roles of four conserved histidine residues within this subunit were probed by site-directed mutagenesis to asparagine. The catalytic...

متن کامل

Inactivation of the amidotransferase activity of carbamoyl phosphate synthetase by the antibiotic acivicin.

Carbamoyl phosphate synthetase (CPS) from Escherichia coli catalyzes the formation of carbamoyl phosphate from 2 mol of ATP, bicarbonate, and glutamine. CPS was inactivated by the glutamine analog, acivicin. In the presence of ATP and bicarbonate the second-order rate constant for the inactivation of the glutamine-dependent activities was 4.0 x 10(4) m(-1) s(-1). In the absence of ATP and bicar...

متن کامل

Restricted passage of reaction intermediates through the ammonia tunnel of carbamoyl phosphate synthetase.

The x-ray crystal structure of the heterodimeric carbamoyl phosphate synthetase from Escherichia coli has identified an intermolecular tunnel that connects the glutamine binding site within the small amidotransferase subunit to the two phosphorylation sites within the large synthetase subunit. The tunneling of the ammonia intermediate through the interior of the protein has been proposed as a m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 38 48  شماره 

صفحات  -

تاریخ انتشار 1999